致力于成为世界一流高纯铟、铟系列产品及铟综合回收利用的供应商

了解详情

bob手机客户端

爱岗敬业    务实创新

用心服务    勇争一流

bob手机客户端:一种高纯镓的制备方法与流程

发布时间:2023-09-10 07:18:57 来源:BOB手机客户端登录入口 作者:bob手机官网登录

  导航:X技术最新专利金属材料;冶金;铸造;磨削;抛光设备的制造及处理,应用技术

  镓在自然界中以微量分散于铝矾土矿、硫化铜矿和闪锌矿等矿石中。最初镓常被用来生产低熔点合金和高温温度计等初级产品,近年来镓及其化合物的研究在半导体领域取得了突出的进展,以砷化镓和氮化镓为代表的镓化合物的优良特性不断被发现,应用场景范围逐步扩大,被大范围的应用于光学系统、微波通信、高速大规模集成电路、太阳能电池等方面。按照(GB/T1475-2005)国家标准,金属镓纯度达到4N-5N通常称为工业镓;纯度达到6-7N通常称为高纯镓。但是,不同的应用对镓的纯度要求也不同,其中,6N级镓大多数都用在GaAs、GaP和GaSb等晶体,称为“电子级”镓;7N级用于制作集成电路衬底的砷化镓,称为“电路级”超纯镓、以及用作分子束外延(MBE)靶材的“分子束外延”超纯镓。镓的提纯方法有很多,如化学萃取、电解精炼、垂直梯度冷凝法(VGF法)等,但是这一些方法均存在质量不稳定、易引入新的杂质等问题。公开号为CN02618734A的中国专利利用部分结晶法提纯金属镓,经过五次部分结晶操作,将4N级金属镓提纯为6N级金属镓,但是该单步工艺质量控制不稳定,在五次结晶后依然可检出Fe元素残留。公开号为CN103031450A的中国专利申请重复利用酸洗、超声波振动和部分结晶法分离提纯金属镓,可将2N-3N级金属镓提纯至4N-5N级别,该提纯方法简单,便于重复操作和大规模生产,但是提取的纯度不高。

  本发明旨在提供一种高纯镓的制备方法,以解决现存技术中高纯镓的制备方法繁琐的问题。为实现上述目的,根据本发明的一个方面,提供了一种高纯镓的制备方法,该制备方法有:步骤S1,在超声条件下对粗镓液进行酸式萃取,得到金属镓溶液;步骤S2,对金属镓溶液进行电解提纯,得到提纯镓溶液;以及步骤S3,利用部分结晶法对提纯镓溶液进行结晶,得到高纯镓。进一步地,上述步骤S1包括在超声振荡器中利用盐酸对粗镓液进行酸式萃取。进一步地,上述盐酸为1~5mol/L的分析纯盐酸。进一步地,上述超声的频率为10~60KHz,优选20~50KHz;功率为50~120W,优选60~80W。进一步地,上述步骤S1中控制酸式萃取的温度为40~60℃,优选酸式萃取的时间为20~60min。进一步地,上述步骤S2包括将阴极和阳极置于含金属镓溶液的电解液中进行电解提纯,电解提纯过程中,电流密度为150~250A/m2,电解液温度为40~60℃。进一步地,上述电解液中镓含量为30~80g/L,电解液为100~200g/L的NaOH溶液。进一步地,上述电解过程中通过调整NaOH溶液的浓度维持电解电压稳定在正负偏差5%的范围内。进一步地,上述阳极为铂电极,阴极为表面包裹有金属镓的铂电极。进一步地,上述步骤S3包括:收集提纯镓溶液,得到固态镓;将固态镓置于35~60℃下熔化,得到液态镓;将液态镓置于15~25℃下进行逐渐凝固,至30~60%的液态镓凝固,取凝固得到的固态嫁而得到高纯镓。进一步地,上述粗镓液为2N~4N级镓液。应用本发明的技术方案,将超声和酸式萃取结合并与电解精炼、部分结晶法联合,避免了单一步骤反复重复多次,使得工艺步骤减少,其中,利用酸式萃取将粗镓液中的杂质萃取至酸液中,与金属镓溶液分离,然后对金属镓溶液进行电解提纯,其中金属镓在阴极富集,从而得到提纯镓溶液,随后利用部分结晶法对提纯镓溶液进行结晶,由于镓的凝固点较低,因此在结晶过程中部分杂质保留在提纯镓溶液中,而结晶凝固得到的固态镓即为高纯镓;且能提取高纯镓,有实际效果的减少多种杂质浓度,由此可见本申请的制备方法技术相对简单且成本较低。具体实施方式需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。如上所描述的,传统提取高纯镓使用的均是单一法,为了有效提升纯度往往需要重复多次,但纯度提高仍然有限,杂质不能大大降低。针对以上现存技术的缺点和不足,在本发明一种典型的实施方式中,提供了一种高纯镓的制备方法,该制备方法有:步骤S1,在超声条件下对粗镓液进行酸式萃取,得到金属镓溶液;步骤S2,对金属镓溶液进行电解,得到提纯镓溶液;以及步骤S3,利用部分结晶法对提纯镓溶液进行结晶,得到高纯镓。上述制备方法将超声和酸式萃取结合并与电解精炼、部分结晶法联合,避免了单一步骤反复重复多次,使得工艺步骤减少,其中,利用酸式萃取将粗镓液中的杂质萃取至酸液中,与金属镓溶液分离,然后对金属镓溶液进行电解提纯,其中金属镓在阴极富集,从而得到提纯镓溶液,随后利用部分结晶法对提纯镓溶液进行结晶,由于镓的凝固点较低,因此在结晶过程中部分杂质保留在提纯镓溶液中,而结晶凝固得到的固态镓即为高纯镓;且能提取高纯镓,有实际效果的减少多种杂质浓度,由此可见本申请的制备方法技术相对简单且成本较低。在本发明一种优选的实施例中,上述步骤S1包括在超声振荡器中利用盐酸对粗镓液进行酸式萃取。利用盐酸对粗镓液进行酸式萃取,初步分离出粗镓中的海绵镓,粗镓中部分轻金属和重金属杂质均被夹在海绵镓中析出;而且在酸式萃取的同时进行超声振荡起到对粗镓液的搅拌作用,增加了酸与杂质的接触几率,进而能取得理想的分离杂质的作用。当然,用于上述酸式萃取的酸液并不限于盐酸,硝酸和硫酸等酸溶液也能够正常的使用。上述在酸式萃取过程中应用的盐酸可以再一次进行选择本领域的分析纯的稀盐酸,优选上述盐酸为1~5mol/L的分析纯盐酸。另外,其中超声振荡的最大的作用是搅拌粗镓液,因此本领域技术人能根据对搅拌程度的要求选择超声的频率和功率,本申请优选超声的频率为10~60KHz,功率为50~120W,既能实现对粗镓液的搅拌作用,又不会产生太多热量。为了进一步优化酸式萃取效果,优选上述步骤S1中控制酸式萃取的温度为40~60℃,将酸式萃取的温度控制在40~60℃,既能保持镓以液态形式存在,又能避免过多的镓溶于酸溶液,上述温度控制可以采用本领域常用的水浴加热方式实施。在上述酸式萃取的过程中,酸式萃取时间能够准确的通过萃取温度、酸液的浓度等进行调整,实现既能充分分离杂质又不会浪费资源,在本申请所选择的酸式萃取条件下,优选萃取的时间为20~60min。在本发明有一种优选的实施例中,完成上述酸式萃取之后,进行下一步骤S2,该步骤S2包括将阴极和阳极置于含金属镓溶液的电解液中进行电解提纯,该电解提纯过程中,电流密度为150~250A/m2,电解液温度为40~60℃。在上述条件下进行电解,既能避免由于电流密度过大造成的阳极过饱和,进而导致阴极沉积的金属镓中杂质含量过多,又能避免由于电流密度过小造成的电解效率低的问题。此外,本发明优选上述电解液中镓含量为30~80g/L,电解液为100~200g/L的NaOH溶液。对具有上述镓含量的电解液进行电解,能够增加电解效率;另外,选择100~200g/L的NaOH溶液作为电解液,既能避免氢氧化钠浓度过高导致其在电解过程中结晶,劣化电解环境,又能避免其浓度过低导致电解效率降低、杂质浓度过高的问题。同时,本发明为了尽最大可能避免在电解过程中由于电解电压波动较大导致电解过程难以控制、除杂效果不理想的问题,优选在电解过程中通过不断添加NaOH溶液使其浓度保持稳定,维持电解电压稳定在正负偏差5%的范围内。在实施本发明的电解过程时,其所采用的阴极和阳极均可参照现存技术,比如采用铂金、钯金等。本发明为了进一步减少电解过程中电解液的消耗,保持稳定的电流效率,优选上述阳极为铂电极,阴极为表面包裹有金属镓的铂电极。这是因为在铂电极表面上包裹镓之后,阴极就形成镓电极,由于H在镓表面的析出电位比其在铂表面的析出电位高,H的实际析出电位就会比GaO2-/Ga小,在电解过程中不会析出,因此减少了电解液的消耗量,延长了电解液使用时间。在本发明有一种优选的实施例中,上述步骤S3包括:收集提纯镓溶液,得到固态镓;将固态镓置于35~60℃下熔化,得到液态镓;将液态镓置于15~25℃下进行逐渐凝固至30~90%的液态镓凝固,取凝固得到的固态嫁而得到高纯镓。电解之后的得到的提纯镓溶液在收集过程中,由于处于室温下由液态变为固态镓;在经过前两步的处理之后,粗镓中的杂质已经被大部分去除,剩余的杂质元素的偏析系数小于1,因此在上述结晶过程中,杂质元素在固相中的浓度将小于其在液相中的浓度,从而使得这些杂质元素留在液态镓中,进而时凝固结晶的高纯镓中杂质浓度显而易见地下降。本发明的制备方法适用于目前的各级镓成品,尤其当粗镓为2N~4N级镓时,其提纯的效果更明显。以下将结合实施例和对比例,进一步说明本发明的有益效果。实施例1首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用浓度为4mol/L的盐酸对粗镓液中的镓进行酸式萃取,用水浴控制萃取温度为50℃,超声频率为50KHz、功率为60W,萃取持续30分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于5ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为50℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以150g/L的NaOH溶液作为电解液,且电解液中镓含量为50g/L,控制电流密度200A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe未检出,Cu的浓度低于2ppm,As的浓度低于20ppm。接着,将上述固态镓在置于40℃的恒温箱中熔化,再移至置20℃恒温箱中逐渐凝固,在50%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe未检出,Cu未检出,As的浓度低于10ppm,其它杂质均未检出。实施例2首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用浓度为1mol/L的盐酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为40℃,超声频率为40KHz、功率为60W,酸式萃取持续60分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于10ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为40℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以200g/L的NaOH溶液作为电解液,且电解液中镓含量为30g/L,控制电流密度150A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe未检出,Cu的浓度低于5ppm,As的浓度低于20ppm。接着,将上述固态镓在置于60℃的恒温箱中熔化,再移至置15℃恒温箱中逐渐凝固,在90%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe未检出,Cu未检出,As的浓度低于5ppm,其它杂质均未检出。实施例3首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用浓度为5mol/L的盐酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为60℃,超声频率为20KHz、功率为70W,酸式萃取持续20分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于5ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为60℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以100g/L的NaOH溶液作为电解液,且电解液中镓含量为80g/L,控制电流密度250A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe未检出,Cu的浓度低于2ppm,As的浓度低于20ppm。接着,将上述固态镓在置于35℃的恒温箱中熔化,再移至置25℃恒温箱中逐渐凝固,在30%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe未检出,Cu未检出,As的浓度低于8ppm,其它杂质均未检出。实施例4首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用浓度为4mol/L的硝酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为50℃,超声频率为30KHz、功率为80W,酸式萃取持续30分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于5ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为50℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以150g/L的NaOH溶液作为电解液,且电解液中镓含量为50g/L,控制电流密度200A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe的浓度低于20ppm,Cu的浓度低于5ppm,As的浓度低于20ppm。接着,将上述固态镓在置于40℃的恒温箱中熔化,再移至置20℃恒温箱中逐渐凝固,在50%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe未检出,Cu未检出,As的浓度低于5ppm,其它杂质均未检出。实施例5首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用盐酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为50℃,超声频率为20KHz、功率为90W,酸式萃取持续30分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于5ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为50℃,以钯作为阴极,以经过插入液态金属镓池处理的钯作为阳极,以150g/L的NaOH溶液作为电解液,且电解液中镓含量为50g/L,控制电流密度200A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe未检出,Cu的浓度低于2ppm,As的浓度低于40ppm。接着,将上述固态镓在置于40℃的恒温箱中熔化,再移至置20℃恒温箱中逐渐凝固,在50%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe未检出,Cu未检出,As的浓度低于5ppm,其它杂质均未检出。实施例6首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用盐酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为50℃,超声频率为10KHz、功率为120W,酸式萃取持续30分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于5ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为50℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以150g/L的NaOH溶液作为电解液,且电解液中镓含量为50g/L,控制电流密度260A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe未检出,Cu的浓度低于4ppm,As的浓度低于30ppm。接着,将上述固态镓在置于40℃的恒温箱中熔化,再移至置20℃恒温箱中逐渐凝固,在50%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe未检出,Cu未检出,As的浓度低于10ppm,其它杂质均未检出。实施例7首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用浓度为0.5mol/L的盐酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为50℃,超声频率为10KHz、功率为120W,酸式萃取持续30分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于20ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为50℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以150g/L的NaOH溶液作为电解液,且电解液中镓含量为50g/L,控制电流密度200A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe的浓度低于50ppm,,Cu的浓度低于10ppm,As的浓度低于20ppm。接着,将上述固态镓在置于40℃的恒温箱中熔化,再移至置20℃恒温箱中逐渐凝固,在50%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe的浓度低于10ppm,Cu未检出,As的浓度低于5ppm,其它杂质均未检出。实施例8首先,将3N级别的粗镓液放置于超声震荡器中的容器中,使用浓度为4mol/L的盐酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为50℃,超声频率为10KHz、功率为50W,酸式萃取持续30分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至4N级,Fe的浓度低于100ppm,Cu的浓度低于5ppm,As的浓度低于100ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为50℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以150g/L的NaOH溶液作为电解液,且电解液中镓含量为50g/L,控制电流密度200A/m2,同时在电解过程中不断添加NaOH以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为5N级,Fe未检出,Cu的浓度低于2ppm,As的浓度低于10ppm。接着,将上述固态镓在置于40℃的恒温箱中熔化,再移至置20℃恒温箱中逐渐凝固,在50%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为7N级,Fe未检出,Cu未检出,As的浓度低于5ppm,其它杂质均未检出。实施例9首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用浓度为4mol/L的盐酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为50℃,超声频率为50KHz、功率为60W,酸式萃取持续30分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于5ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为50℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以150g/L的NaOH溶液作为电解液,且电解液中镓含量为50g/L,控制电流密度200A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5~10%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe的浓度低于50ppm,Cu的浓度低于3ppm,As的浓度低于40ppm。接着,将上述固态镓在置于40℃的恒温箱中熔化,再移至置20℃恒温箱中逐渐凝固,在50%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe未检出,Cu未检出,As的浓度低于10ppm,其它杂质均未检出。实施例10首先,将2N级别的粗镓液放置于超声震荡器中的容器中,使用浓度为7mol/L的盐酸对粗镓液中的镓进行酸式萃取,用水浴控制酸式萃取温度为35℃,超声频率为60KHz、功率为150W,酸式萃取持续30分钟,得到镓金属液,对该镓金属液进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升至3N级,Fe的浓度低于150ppm,Cu的浓度低于20ppm,As的浓度低于120ppm。然后,将上述步骤得到的镓金属液置于电解槽中进行电解,反应温度通过水浴控制为50℃,以铂作为阴极,以经过插入液态金属镓池处理的铂作为阳极,以150g/L的NaOH溶液作为电解液,且电解液中镓含量为50g/L,控制电流密度200A/m2,同时在电解过程中不断添加NaOH溶液以保持电解电压的稳定在正负偏差5%的范围内,收集阴极的镓得到固态镓,对固态镓进行辉光放电质谱(GD-MS)检测,发现镓的纯度提升为4N级,Fe的浓度低于20ppm,Cu的浓度低于2ppm,As的浓度低于20ppm。接着,将上述固态镓在置于40℃的恒温箱中熔化,再移至置20℃恒温箱中逐渐凝固,在50%的液态镓凝固时将其取出,得到高纯镓。对该高纯镓进行辉光放电质谱(GD-MS)检测,镓的纯度提升为6N级,Fe未检出,Cu未检出,As的浓度低于10ppm,其它杂质均未检出。对比例1重复公开号为CN103031450A的中国专利申请中的实施例1,该实施例将3N级的粗镓提纯至4N~5N级。由实施例1至10和对比例的提纯前后金属镓的纯度对比可知,采用本发明的制备方法只需三步就可以将2N级的金属镓提纯至6N级或者将3N级的金属镓提纯至7N级,最终得到的金属镓均能达到高纯镓的要求;而对比例的提纯仅能从3N级提纯至4N~5N级,其提纯效果明显低于本发明。以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围以内。



上一篇:驰宏锌锗董秘回复:公司锗锭价格参阅上海有色金属网锗锭价格(截止2021年11月26日均价为9150元千克同比增加2979%)一起结合商场供需、原材料价格等要素当令调整。公司部属全资子驰宏锗
下一篇:镓、锗出口管制正式实施急了谁?
2023-09-10
bob手机客户端